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Abstract

A numerical study was conducted to investigate swirling flows of a Boussinesq fluid confined in a cylindrical con-
tainer with co-/counter-rotating end disks. A vertically stable temperature gradient is imposed, with the stationary side-
wall assumed as adiabatic. Flows are studied for a range of parameters: the Reynolds number, Re, 100 6 Re 6 2000; the
Richardson number, Ri, 0 6 Ri 6 1.0; and the Prandtl number, Pr, Pr = 1.0. The ratio of the angular velocity of the top
disk to the bottom disk, s, �1.0 6 s 6 1.0. The cylinder aspect ratio: h = 2.0. For the case of negligibly small temper-
ature difference (Ri � 0) and high Re, interior fluid rotates with an intermediate angular velocity of both end disks when
they are co-rotating (s > 0). When end disks are counter-rotating (s < 0), shearing flow with meridional recirculation is
created. For the case of large temperature difference (Pr Æ Ri � O(1)), the Ekman suction is suppressed and the sidewall
boundary layer disappears at mid-height of the cylinder. For all the values of s considered in the present study, the bulk
of the fluid is brought close to rest with the fluid in the vicinity of both end disks rotating in each direction. The sec-
ondary flow in the meridional section of the cylindrical container exhibits various types of vortices as the governing
parameters are varied. These flow patterns are presented in the form of diagrams on the (s,Re) plane and (s,Ri) plane.
The average Nusselt number is computed and presented as functions of Ri, Re and s.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The flow of fluid layer between two rotating disks has
provided fertile research topics for theorists [1–6]. The
confined swirling flow has relevance also to many tech-
nological applications, e.g., rotating machinery, thrust
bearings, viscometry, computer storage devices and
material processing units [7,8]. It is known that the
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rotating flow over a disk of infinite expanse can be
solved analytically by assuming the similarity solution
[1]. By applying the von Kármán similarity transforma-
tion, the partial differential equations are decomposed
into a system of ordinary differential equations for four
unknowns. Similarity transformation was applied to the
flow between two infinite disks by Batchelor [2] and Ste-
wartson [3]. Analytical solutions derived by these two
authors exhibit qualitatively different behavior at the
limit of high Reynolds number [4]. If we assume the
angular velocity of the top and bottom disks as Xs and
X, respectively, the Batchelor solution predicts that in
ed.
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Nomenclature

Ek Ekman number (Ek = m/XR2)
Gr Grashof number (Gr = gaDTR3/m2)
g gravity acceleration
H height of the cylindrical container
h cylinder aspect ratio (h = H/R)
N Brunt Väisälä frequency (N = (gaDT/H)1/2)

Nu local Nusselt number
�
NuðrÞ ¼ oT

oz

��
z¼0 or z¼h

�
Nu average Nusselt number

�
Nu ¼ 1

p

R 2p
0

R 1
0

oT
oz

rdrdh
�

Pr Prandtl number (Pr = m/j)
R radius of the cylindrical container
Re Reynolds number (Re = XR2/m)
Ri Richardson number (Ri = Gr/Re2 = agDT/

X2R)
Ro Rossby number (Ro = 1 � s)
r radial coordinate
S stratification parameter (S = N2/X2)
s ratio of the angular velocity of top disk to

bottom disk (s = Xs/X)

T temperature
T0 average temperature
u radial velocity component
v azimuthal velocity component
w axial velocity component
z axial coordinate
a thermal expansion coefficient
DT temperature difference between the top and

bottom disks
Dt discrete time increment
j thermal diffusion coefficient
m kinematic viscosity
u azimuthal coordinate
w Stokes streamfunction
X angular velocity of bottom disk
Xs angular velocity of top disk
x azimuthal vorticity component
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the inviscid limit with s (= Xs/X) = 0, the bulk fluid ro-
tates at an angular velocity cX (0 < c < 1). The solution
by Stewartson on the other hand predicts that the
boundary layer is formed only on the rotating bottom
disk and the bulk fluid is at rest. Apparently contradic-
tory result deduced from the von Kármán similarity
solution has led to intensive theoretical studies and dis-
closure of non-uniqueness and multiplicity of solutions
as the control parameter is varied [4,5]. In more realistic
set up of the boundary conditions, i.e., the flows on finite
disks, the importance of the sidewall boundary condi-
tions on determining the nature of the inner flow has
been recognized [4–6]. For the flows in the cylindrical
container with the rotating top disk and co-/counter-
rotating sidewall and bottom disk, velocity distribution
similar to both Batchelor and Stewartson types is ob-
served depending on the value of the parameters [9]. In
the recent studies by Lopez et al. [10,11], transition from
steady to unsteady oscillatory flows is investigated for
the same cover-casing problem. The linear stability of
the steady state solutions with respect to axisymmetric
disturbances is analyzed by Gelfgat et al. [12,13] for
homogeneous fluid confined in cylinders with co-/coun-
ter-rotating top and bottom disks.

In many practical applications, heat transfer is asso-
ciated with the rotating fluid flows. Considerable
amount of previous investigations have directed toward
the convection and instabilities in connection with the
crystal growth processing units where thermally unstable
boundary conditions are imposed (see, e.g., [7,8] and
references therein). It appears that a relatively small
amount of studies have been done on the laminar rotat-
ing flow confined in containers under stable temperature
difference. The properties of rotating flow under thermal
stratification were theoretically studied by Barcilon and
Pedlosky [14,15]. The swirling flow between finite disks
under stabilizing temperature difference was numerically
studied by Hyun and coworkers [16,17] for sealed cylin-
drical container when one of the end disks is rotating.
The primary objective of their numerical investigation
was to elucidate the effect of buoyancy on the emergence
of vortex breakdowns. Detailed description of the varied
heat transfer and the flow as the stratification parameter
and the Reynolds number is given in [18] for the cylinder
at a fixed aspect ratio. According to these previous stud-
ies on the flows in the cylindrical container with one of
the end disks rotating, the inner fluid approaches a state
of rest, i.e., the inner fluid does not rotate, and the
boundary layer is formed only on the rotating disk at
a relatively high Reynolds number under the imposition
of large vertical temperature difference. It is of interest
to predict the corresponding behavior for the case of
flows in a container with both end disks rotating, how-
ever, the above flow problem has not attracted much
attention in the past. The flows as well as the heat trans-
fer between two finite disks have yet to be analyzed. In
the present study, therefore, the swirling flow driven by
co-/counter-rotating end disks in a cylindrical container
with stationary sidewall is numerically examined for
the axisymmetric parameter range. Particular interest is
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focused on the behavior of the fluid in the bulk of the
cylindrical container under large vertical temperature
difference and the heat transfer characteristics as the
rotation ratio of the disks s is varied.
Fig. 1. Boundary conditions and flow configuration.
2. Mathematical and numerical models

The governing equations are the continuity equation,
the Navier–Stokes equations and the energy equation.
When the Stokes streamfunction w (Eq. (1)) and the azi-
muthal component of the vorticity x (Eq. (2)) are intro-
duced, the equations to be solved are the vorticity
transport equation (3), the Poisson equation for w and
x (Eq. (4)), the azimuthal momentum equation (5),
and the energy equation (6).
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These equations in conservation form are spatially dis-
cretized by using the second-order central difference
schemes on uneven grid points [19]. Time-marching is
done by a combination of second-order Adams–Bush-
forth method and the Crank–Nicolson method. The
Poisson equation is iteratively solved by the RB-SOR
method. After all the variables are appropriately non-
dimensionalized, the physical parameters that describe
the flows are the Reynolds number Re = XR2/m, the
Richardson number Ri = agDT/X2R, the Prandtl num-
ber Pr = j/m, the ratio of the angular velocity of the
top disk to the bottom disk s = Xs/X and the cylinder as-
pect ratio h = H/R, where m is the kinematic viscosity, a
the thermal expansion coefficient, j the thermal diffusion
coefficient and g the gravity acceleration, respectively.
Alternative choices of parameters are possible, e.g., the
Ekman number Ek = m/XR2, the Rossby number
Ro = 1 � s, the Prandtl number Pr, the stratification
parameter S = N2/X2 and the aspect ratio h might be
suitable for a certain range of parameters, where
N = (gaDT/H)1/2 is the Brunt Väisälä frequency.
The boundary conditions and the flow configuration
are schematically illustrated in Fig. 1. The angular velo-
city of the bottom disk is set at X (=�1) whereas that of
the top disk Xs (=X Æ s) is varied in a range of
�1.0 6 s 6 1.0. Computations are done for the thermal
condition that temperature of the top disk is maintained
higher than the bottom disk (DT P 0). The sidewall of
the cylinder is assumed to be adiabatic.

The initial condition for each parametric case is that
the fluid is at rest when a linear temperature distribution
is established in the vertical direction. Top and bottom
disks start their rotation with angular velocity Xs and
X, respectively, at time t = 0 and time marching is con-
tinued until predetermined convergence criterion is satis-
fied at a large time.

Unevenly spaced grid points are generated by using a
hyperbolic tangent function. Prior to the computation,
the influence of mesh size was checked at a representative
set of physical parameters. The result of this grid depen-
dency check was that the deviation in the maximum value
of the streamfunctionandtheaverageNusseltnumberbet-
ween the medium grid system with 81 · 161 points and
the fine grid system with 161 · 321 points is 0.4% and
1.3%, respectively. For these test calculations, the average
Nusselt number evaluated at z = 0 and z = h coincided up
to seven digits. Since these values are considered to exhibit
sufficient degree of accuracy for the purpose of the present
study, themedium grid systemwith 81 · 161 grid points is
used in the following computations.
3. Results

Numerical solutions are obtained for 100 6 Re 6

2000, 0 6 Ri 6 1.0, �1.0 6 s 6 1.0, Pr = 1.0 and h =
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2.0. In the linear stability analysis by Gelfgat et al. [12],
the critical Reynolds number Recrit of the flow of homo-
geneous fluid to axisymmetric disturbances exhibits
lowest value (Recrit = 1646) at s = �1 on the interval
�1 6 s 6 1 for h = 1.5. Similar analysis [13] conducted
for flows with co-rotating disks (s = 1) indicates that
Recrit = 3845 at h = 1.5 and Recrit = 2567 at h = 2.0.
As the stability limit of inhomogeneous fluid for the
present problem is not known from the previous litera-
tures, the value of Re in the present study was arbitrarily
chosen so as to study the steady axisymmetric flows.
After the computations, cases at high Re, Ri = 0 and
negative s turned out to be unsteady (see Fig. 3). The
values of stability limit obtained in the present study
are Recrit = 1982 at s = �0.925 and Recrit = 1948 at
s = �1. The average Nusselt number for these cases is
included in Figs. 12 and 13 because the temporal varia-
tion in Nu is small. In the following subsections, the re-
sults of parametric computation are first presented in the
form of a diagram (in Figs. 3 and 4) showing the influ-
ence of physical parameters on the creation of meridio-
nal flow patterns. Flows are subsequently examined for
representative cases of Re = 1000 under negligible tem-
perature difference (Ri = 0) in Fig. 5 and then under
large temperature difference (Ri = 1.0) in Fig. 6, respec-
tively. The velocity and the temperature distributions are
plotted in Fig. 7 and analyzed in Fig. 8. The Nusselt
number is scrutinized in Figs. 9–13.

3.1. Meridional flow pattern

In order to obtain a perspective view over the charac-
teristic features of the flows as Re, Ri and s are varied,
diagrams are made in Figs. 3 and 4 that present maps
of flow patterns encountered in the course of extensive
parametric computations (Fig. 2). The case of negligible
temperature difference (Ri = 0) is plotted on a separate
diagram in Fig. 3 because it deserves particular attention
as Ri = 0 corresponds to the case of pure forced convec-
tion. The case of positive temperature difference (Ri > 0)
is shown on (s,Ri) plane for Re = 100 and 1000 in Fig. 4.

The contour plots of meridional streamfunction
showing various shapes of vortices as the rotation ratio
is varied were presented in [12,23]. However, the stream-
line plots in [12] is restricted to limited values of Re and
h. Diagram presented by Jahnke and Valentine in [23]
which they called cartoon, disregarded many flow types
and the information is limited to s P �0.1 since their
motivation was mainly to investigate the deformation
and changes of vortex breakdown bubbles. Therefore,
the result of the present study charted in Fig. 3 offers
coherent picture of the secondary flow patterns, to the
author�s knowledge, for the first time over the entire
range of �1 6 s 6 1. All the data points plotted in [23]
is read from their figure and reproduced by triangles in
the diagram. These points indicate the critical values
of s and Re at which separation bubbles first occur or
transitions to different types of bubbles occur. The cor-
responding values of the present computation are shown
by curves in the diagram. The position of these bound-
ary curves is determined as a midpoint of two points
on the parameter plane where solutions are actually
computed. Since a large number of computations had
been carried out (about 800 cases in Fig. 3 and 1000
cases in Fig. 4), the minimum distance of neighboring
points in the diagrams falls down to small values, i.e.,
Ds = 0.001, DRe = 6.25 (=100/16) and DRi = 0.0125
(=0.1/16). These small increments of parameters induce
practically no need for interpolation method in the pres-
ent study. The agreement between [23] and the present
computation appears to be fair. Other marks distributed
in Fig. 3 (and Fig. 4) represent points where flow pat-
terns listed in Fig. 2 are drawn.

The influence of end disk rotation on the flow that
contains two axis bubbles was experimentally observed
by Roesner [24] and computed by Gelfgat et al. [12].
Gelfgat et al. affirmed that with a weak increase of co-
rotation (s = 0.03 at Re = 2000) two separation bubbles
merge and form a relatively large separation vortex bub-
ble. Weak counter-rotation eliminates both bubbles at
s = �0.04 when Re = 2000. In the present diagram, a
narrow strip along s = 0, ReP 1748 represents the
parameter region where two axis vortex bubbles occur
(type C2 flow). This parameter region spans approxi-
mately from s = �0.008 to s = 0.02 at Re = 2000 and
it is adjacent to the regions for type C and type C2m

flows in the negative and positive s directions, respec-
tively. The parameter region for type C flow is then con-
verted into the region for type A flow at s = �0.04 and
Re = 2000 as s is further decreased. In the positive s

direction, on increasing the value of s, the parameter re-
gion for type C2m flow is varied into the region for type
C flow at s = 0.057 and Re = 2000. Thus, the present re-
sult is consistent with the previous studies and present-
ing the behavior of the separation vortex bubbles in a
comprehensive manner.

It might be worth pointing out that the present study
reveals minute details about the parameter dependency
of counter-rotating (s < 0) flow patterns not recognized
in the previous studies. For example, type A flow at
s = 0 is directly deformed into type B flow as s is de-
creased to a certain negative value when Re 6 1013.
Deformation is caused by a gradual growth of corner
recirculating zone and migration of stagnation point
from the top disk to the axis of rotation. Whereas for
ReP 1263, separation occurs on the top disk (type A0

flow) in a relatively small interval of s (< 0) and then this
separated zone is merged with the corner recirculating
zone (type A1 flow) before type B flow emerges as s is de-
creased. For co-rotating disk flows, flow types D and D0

occur along the line s = 1 while type E2 flow appears in a
very narrow region in the vicinity of (s,Re) = (0.99,455).



Fig. 2. List of meridional flow patterns. The values of (Re, s,Ri) are A (700,0.2,0), A0 (1600,�0.22,0), A1 (1600,�0.25,0), B
(700,�0.6,0), B0 (100,�0.025,0.55), B1 (100,0,0.4125), B2 (100,�0.3,0.9), B2 0 (1600,�0.425,0), B2+ (100,0.7,0.9), B2� (100,0.05,0.8),
B2+� (100,0.05,0.9), B20 (100,�0.04,0.8), B3 (100,0.0125,0.6), B4 (100,0.9,0.9), B4+ (1000,0,0.9), B4+0 (1000,0.6,0.9), B4++

(1000,0.6,1.0), B5 (1000,0,0.5), B6 (1000,�0.05,0.55), C (1600,0.2,0), C0 (1600,0.475,0), C1 (1600,0.6,0), C2 (1800,0.002,0), C2m

(1800,0.007,0), C3 (700,0.6,0), D (700,1.0,0), D0 (1600,1.0,0), D0 0 (1000,0.9,0.15), D0+ (1000,1.0,0.2), D1 (100,1.0,0.6), D2

(100,1.0,0.725), D4 (1000,1.0,0.9), E (450,0.99,0) and E2 (460,1.0,0).
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Diagrams similar to the one presented in Fig. 3 are
then constructed on (s,Ri) plane for flows with vertical
temperature difference at two values of Re, Re = 100
and 1000 in Fig. 4. It is readily observed in these figures
that the primary effect of vertical temperature difference
on the flow pattern is to bring the meridional recircula-
tion into vertically layered structures: Type A flow is re-
placed by a two-layered type B flow at Ri = 0.0263 for
Re = 100 as Ri is increased. For Re = 1000, type A flow
is altered to type B2 flow at Ri = 0.093. The axis bubbles
seen for Re = 1000 in flow types C and C3 are eliminated
under the influence of buoyancy at small values of Ri

(Ri � O(10�1)). On the range of Ri considered in the
present study, up to four layered recirculating zones
(type B4 flow) appear for Re = 100 and six such zones
(type B6) are noted for Re = 1000 depending on the
value of s. For low Reynolds number flow at Re = 100,
a considerable degree of similarity is noticed between the
flows with s and �s and this is reflected in the diagram:
The diagram itself exhibits symmetry with respect to
s = 0. As Re is increased, the symmetry is broken and
the complexity of the diagram is increased. Even at
Re = 100, the diagram contains narrow regions indi-
cated as B2x in Fig. 3(a) where four flow types appear
and we are forced to be contended with mapping more
obvious flow types, B2, B3 and B4. Situation at
Re = 1000 is intricate to the extent that the regions indi-
cated as Dx and the regions indicated by dotted curves
surrounding the region for B5 contain several flow
patterns.
3.2. Flow field and isotherms

When Ri = 0 and s = 1.0, top and bottom disks are
rotating in the same direction with the same angular
velocity (Fig. 5). Owing to the geometrical symmetry,
the flow field and the isotherms are symmetric with
respect to mid-height plane at z = 1.0. In the case of
s > 0, fluid in the bulk of the cylinder exhibits quasi-rigid
rotation with an intermediate angular velocity of both
end disks. The Batchelor type flow is realized with the
Ekman layer of thickness O(Re�1/2) on both end disks
and the Stewartson layer with double structure (Re�1/4,
Re�1/3) on the sidewall (compare the boundary layer
thickness in (a) and (c), e.g., for s = 0 in Fig. 5). Almost
uniform axial flow appears in the vicinity of the rotating
axis as a result of the Ekman suction. Mass efflux occurs
on the slower rotating top disk and mass influx occurs on
the faster rotating bottom disk. As the container is finite,
main recirculation is induced in the meridional plane in
order to compensate for the axial mass transfer. In the
case of s < 0, i.e., the top and bottom disks are coun-
ter-rotating, shearing flow is created between the top
and bottom boundaries. Recirculating zones are formed
in the whole meridional section of the container. The
angular momentum is transferred into the bulk fluid by
the action of this secondary flow. When s = �1, the flow
and temperature field is anti-symmetric with respect
to the mid-height plane at z = h/2 (=1.0). For all the
values of s at this Re, convection dominates the thermal
transport and steep vertical temperature gradient is
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concentrated in the vicinity of the top and bottom bound-
aries. For s = 1 and �1, vertical temperature gradient is
also noticed in the interior, on the radial outer portion
(0.5 < r) of the mid-plane at z = h/2. Above observation
on the flow between counter-rotating disks is qualita-
tively in accordance with the theoretical studies on homo-
geneous fluid [6] and this confirms our presumption as to
the validity of the present numerical simulation.

The contour plots of streamfunction in Fig. 5(a) at
s = 1 exhibit a pair of symmetric vortices attached to
the axis of rotation and the mid-plane z = h/2. The
behavior of these vortices as Re and h are varied with
s fixed at s = 1 is well documented from the viewpoint
of vortex breakdowns of homogeneous fluid in [20–23].
During the course of parametric study performed by
the present authors, various vortex structures, e.g.,
toroidal, corner, axis vortices are noticed. Observation
of these patterns as summarized in Fig. 3 displays an
overall good agreement with the previous results for
s = 1 and several new types are perceived for s5 1.



Fig. 5. Contour plots of (a) streamfunction, (b) azimuthal component of the vorticity, (c) azimuthal component of the velocity, and (d)
isotherms. The value of contour lines are (a) w = wmax(i/10)

3, i = 0, 1, . . . , 10, wmin(i/10)
3, i = 1, . . . , 10; (b) x = xmax(i/10)

3,
i = 0, 1, . . . , 10, x = xmin(i/10)

3, i = 1, . . . , 10; (c) v = (i/10)3, i = 0, 1, . . . , 10, v = �(i/10)3, i = 1, . . . , 10; and (d) T = (i/20) � 0.5,
i = 0, 1, . . . , 20, respectively. Re = 1000, Pr = 1.0 and h = 2.0; Ri = 0.

Y. Omi, R. Iwatsu / International Journal of Heat and Mass Transfer 48 (2005) 4854–4866 4861
The physical mechanisms that induce these vortices are
discussed in the previous literatures and the role of x
is stressed (e.g., [23]). The distribution of x is determined
as a solution of Eqs. (3)–(5) with the boundary condition
including s as a variable. Consequently, it might be nat-
ural to expect various types of vortices not observed for
flows with s = 1 configuration, because the value of s is
not fixed to a single value and allowed to vary on an
interval in the present configuration. Now the behavior
of flow with large vertical temperature difference is
described in the following at Ri = 1.0 for the same
values of Re and s.

When Ri = 1.0 (Fig. 6), i.e., under the condition that
temperature stratification is prominent, although the
boundary layers are formed on both rotating disks, as
a result of the inhibition of vertical motion by the buoy-
ancy force, the Ekman suction disappears in the interior
of the container (plots in (a) of Fig. 6). The suppression
of meridional recirculation culminates in the loss of the
mechanism that is responsible for the azimuthal momen-
tum transfer (plots in (c) of Fig. 6) [14,15]. Fluid in the
bulk apart from the rotating disks tends to be quiescent
(note that the values of contour plots in Fig. 6(c) are not
equi-divided between the maximum and minimum val-
ues). This behavior is in contrast to the previous case
of Ri = 0 where the bulk fluid rotates with an intermedi-
ate angular velocity of the top and bottom disks. The
connection between the top and bottom boundary layers
is thus lost and the fluid in the vicinity of each disk ro-
tates in each direction. The sidewall boundary layer is
lost approximately from z = 0.5 to 1.5 in Fig. 6(b) when
s = 1.0, 0.9 and �1.0. As clearly shown in the isotherms,
the temperature distribution is dominated by the con-
ductive heat transfer.



Fig. 6. Similar plots to Fig. 2. Re = 1000, Pr = 1.0 and h = 2.0; Ri = 1.0.
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3.3. Velocity distribution

In order to study the vertical structure of the flows in
detail, each component of the velocity and the tempera-
ture are plotted along a vertical line at r = 0.8 for Ri = 0,
1.0 and representative values of s in Fig. 7. The prohibi-
tion of the vertical motion under the stratification condi-
tion and the conduction dominated linear temperature
distribution is observed in Fig. 7 as in Figs. 5 and 6.

The difference of rotating flows with and without
temperature stratification is displayed in a marked man-
ner when the value of rotation ratio s is close to unity.
When s ffi 1.0 and Re is sufficiently high, much of the
fluid in the cylinder accomplishes quasi-rigid rotation.
In such a case, adoption of Rossby number Ro and
the Ekman number Ek based on the rotating frame fixed
to quasi-rigidly rotating fluid might be more convenient
for describing the flow behavior. Fig. 8 shows the abso-
lute value of the velocity components juj and jwj at an
arbitrarily chosen point at (r,z) = (0.3,h/2) plotted as
functions of Ek. If Ro and Ek are both small quantities,
appropriate scaling for the inner flow of homogeneous
fluid (S = 0) is u � O(Ek) and w � O(Ek1/2) [25]. Under
the stratification condition (S > 0), the scaling for inner
flow is w � O(Ek/PrS). Plots in Fig. 8 indicate that the-
oretical scaling holds as an approximation even at
Ro = 0.1 for the present flow configuration. These plots
in Figs. 7 and 8 clearly indicate the qualitative difference
between the rotating flow of homogeneous fluid and
under stratification.

3.4. Nusselt number

The difference in the flow behavior of homogeneous
fluid and that under thermal stratification is fully de-
scribed above for the present flow configuration. We
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would move on to study the effect of vertical tempera-
ture difference on the heat transfer in the following. As
the cylinder sidewall is thermally insulated, heat is trans-
ferred from the top hot disk at z = h to the bottom cold
disk at z = 0. The local Nusselt number at both disks
and the average Nusselt number Nu are defined, respec-
tively, as follows:

NuðrÞ ¼ oT
oz

����
z¼0 or z¼h

; ð7Þ

Nu ¼ 1

p

Z 2p

0

Z 1

0

oT
oz

rdrdh: ð8Þ

The local Nusselt number at the top and bottom
disks for several values of rotation ratio s is plotted in
Fig. 9 for Ri = 0 and in Fig. 10 for Ri = 1.0, respectively.
When Ri = 0 and s = 0.1, 0, �0.1 and �1.0 (see Fig. 9),
the local Nusselt number on the bottom disk attains
local maximum at r = 0 and decreases as r is increased
toward the sidewall located at r = 1.0. The Nusselt
number on the top disk reaches its extreme value at
approximately r = 0.7 except for s = �1.0 due to the
convectional heat transfer caused by the meridional
recirculation. When s = �1.0, owing to the vertical
shearing flow, the value of the Nusselt number is largest
at r = 0. When Ri = 1.0 (see Fig. 10), the conduction
dominates the vertical heat transfer and the local Nus-
selt number approaches to an almost constant value.
This tendency is most conspicuous at the top disk with
s ffi 0. For all the values of s computed, local Nusselt
number is largest at r = 0 and decreases as r is increased
toward sidewall when Ri = 1.0. Also noted in Fig. 10 is
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that plots for s = 1.0 and �1.0 are almost identical. Plots
for s = 0.1, 0 and �0.1 are likewise barely distinguish-
able with each other.
The average Nusselt number is plotted next as a func-
tion of Ri in Fig. 11, as a function of rotation ratio s in
Fig. 12 and as a function of Re in Fig. 13, respectively.
As Ri is increased to O(1) values, the average Nusselt
number Nu for all the values of s approaches the recipro-
cal of the aspect ratio, i.e., 1/h (=0.5 in the present case
at h = 2.0 as R is chosen as the reference scale for the
length) which is the value of the conduction limit (see
Fig. 11). For the range of Re and s studied, it appears
that Nu achieves extreme value at s = �1.0 when
Ri = 0 and Re 6 1000 (see Fig. 12(a)). When Ri = 0,
Re = 1500 and 2000, Nu takes extreme value in the vicin-
ity of s = �0.075. By referring to Fig. 3, it is noticed that
the maximum value of Nu is attained when a single main
recirculation is created in the meridional plane (flow



Fig. 12. Average Nusselt number vs. rotation ratio s: (a) Ri = 0
and (b) Ri = 1.0. Pr = 1.0 and h = 2.0.

7

6

5

4

3

2

1

0

N
u

200015001000500

Re

 s=1. 0
 s=0
 s=-1. 0

 

Ri=0

1.2

1.0

0.8

0.6

0.4

N
u

2000150010005000
Re

 s=1.0
 s=0
 s=-1. 0

Ri=1.0

(a)

(b)

Fig. 13. Average Nusselt number vs. Re. (a) Ri = 0, (b)
Ri = 1.0. Pr = 1.0 and h = 2.0.

Y. Omi, R. Iwatsu / International Journal of Heat and Mass Transfer 48 (2005) 4854–4866 4865
type A) for these high Re flows. Under the stratification
condition (Ri = 1.0), Nu exhibits an almost flat curve
which exposes considerable degree of symmetry with
respect to s = 0, with local minimum located at s = 0
(Fig. 12(a)). By comparing the plots in Fig. 6 for
s = 1.0 and �1.0, the similarity of isotherms and even
the velocity contours is amazingly noted if we remember
the fact that in the former, the end disks are co-rotating
and in the latter, they are counter-rotating. Also the
plots of local Nusselt number for s = 1.0 and �1.0 in
Fig. 10 are almost identical as mentioned above. In
accordance with these observations, Nu for s = 1.0 and
�1.0 take very close values as shown in Fig. 12. Under
the temperature stratification, weakened Ekman suction
results in stationary bulk fluid. With the bulk fluid at
rest, the boundary layers on the end of the disks are
not influenced by each other. This means that whether
the disks are co-rotating or counter-rotating, it does
not affect the thickness of the boundary layers. This dis-
cussion leads us to a conclusion that when Ri � 1, the
average Nusselt number for s is almost equal to the aver-
age Nusselt number for �s. In other words, under strong
temperature stratification, the value of Nu for co-rotat-
ing disks with rotation ratio s is almost equal to the
value of Nu for counter-rotating disks with rotation ratio
�s. The average Nusselt number plotted as a function of
Re in Fig. 13 displays that Nu is an increasing function
of Re and the correlation Re1/2 holds as an appropria-
tion when s = 1 and Ri = 0. For s = 0, �1 and Ri = 0,
a slight variation from Re1/2 is noted in Nu for the range
of parameters studied.
4. Summary

The flows in cylindrical container with co-/counter-
rotating end disks with stationary sidewall are numeri-
cally studied within the axisymmetric parameter range.
The effect of the buoyancy under thermally stable
boundary condition is examined for the flows between
two disks when Re � 1, Pr = O(1) and h = O(1). When
the buoyancy effect is negligible and the disks are co-
rotating, the bulk fluid rotates with an intermediate
angular velocity of the end disks with the boundary lay-
ers formed on all the boundaries. When the disks are
counter-rotating, azimuthal shear flow with meridional
recirculating secondary flow is created. Under the tem-
perature stratification condition, owing to the inhibition
of the vertical motion by the buoyancy, the Ekman suc-
tion is lost and the sidewall boundary layer disappears.
The bulk flow approaches to the state of rest, leaving
the fluid in the vicinity of each end disk rotating in each
direction. These observations are in qualitative agree-
ment with the classical theoretical predictions [2,14,15].
The secondary flow exhibits various types of recirculat-
ing zones and these flow patterns are presented in the
form of diagrams on the parameter planes. For the
range of rotation ratio s studied, the average Nusselt
number achieves maximum value at s = �1 for low Re

flows and maximum value is attained in the vicinity of
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s = 0 for high Re flows, respectively, when Ri = 0. On
the contrary, when Ri = O(1), the average Nusselt num-
ber appears as almost constant but an increasing func-
tion of jsj. It is argued that when Ri � 1, the average
Nusselt number as a function of s is almost symmetric
with respect to s = 0 due to the suppressed Ekman suc-
tion. It might be suggested from the present numerical
simulation that the adoption of vertically stable temper-
ature difference provides a technological means to con-
trol the rotation of inner fluid confined in containers
with rotating end disks. For the situations in which
non-rotating bulk fluid is preferable, the imposition of
vertical large temperature difference provides a means
to realize the desired flow in the container with both
end disks are rotating.
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[1] Th.v. Kármán, Über laminare und turbulente Reibung,
Zeitshr. Angew. Math. Mech. 1 (4) (1921) 233–252.

[2] G.K. Batchelor, Note on a class of solutions of the Navier–
Stokes equations representing steady rotationally-symmet-
ric flow, Quart. J. Mech. 1 (1951) 29–41.

[3] K. Stewartson, On the flow between two rotating coaxial
disks, Proc. Camb. Phil. Soc. 49 (1953) 333–341.

[4] L.v. Wijngaarden, On multiple solutions and other phe-
nomena in rotating fluids, Fluid Dynam. Trans. 12 (1985)
157–179.

[5] P.J. Zandbergen, D. Dijkstra, Von Kármán swirling flows,
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